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believed to exist in humans in the form of viscoelastic
properties of muscles and spinal reflex loop. The concept of
an inverse model is also attractive for analysis problems of
biomechanical quantities, whereby internal loads are esti-
mated from kinesiological measurements. The approach
adopted here in developing a computational model of human
sensory motor control is based on the concept of an inverse
model coupled with nonlinear feedback (FIG. 3). This
mechanism is compelling from the standpoint of biome-
chanical analysis of human motion as well as the synthesis
of artificial control. Let q, represent the desired kinematics,
obtained from motion capture data. The following control
law (Dt'), when applied to the system equations, will result
in a simulated response that will track and reproduce the
desired kinematics data,
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[0048] The diagonal matrices K, and K, represent the
position and velocity feedback gains, respectively. The
eigenvalues of the closed loop system are related to the
feedback gains by the following,
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[0049] A critically damped response (fastest possible non-
oscillatory response) to the tracking error can be achieved by
specifying the eigenvalues to be equal, real, and negative.
The parameter a is constant and set to 0 or 1, depending on
the severity of noise in the measurements. If the desired
trajectories are obtained from noisy motion capture mea-
surements, it may be appropriate to set a=0 and to specify the
eigenvalues to be large and negative. This way, tracking is
achieved without the need to compute unreliable accelera-
tions from noisy kinematics data.

[0050] Muscle Force and Muscle Capacity

[0051] The muscle force and muscle capacity module
should ideally be implemented in the forward path of the
closed loop system (as shown in FIG. 5). However, it may
also be implemented as a separate module whose output is
used for analysis purpose only. In the latter case, the
module’s inputs would tap into the required variables of the
closed loop system, but the module would not alter the
closed loop dynamics.

[0052] In either case, a number of different muscle force
distribution algorithms may be implemented. The underly-
ing concepts of our choice of muscle force distribution
algorithm is presented below.

[0053] The relationship between the net muscular moment
T, and the muscle forces F, is given by,
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[0054] where Lis the overall length of the muscle actuator,
and dL.T/dq is an (nxm) muscle moment arm matrix. Since
the number of muscles (m) exceeds the degrees of freedom
(n), the computation of the muscle actuator’s excitation
inputs (and the resulting forces) from an inverse dynamics
computation amounts to solving a problem that is inherently
ill-posed. Static, nonlinear optimization has been used
extensively to predict the individual muscle forces to pro-
duce the required torque. There are several compelling
reasons for using static optimization to predict the individual
muscle forces: first, static, non-linear optimization tech-
niques have well developed theoretical foundations. With
the advance of commercial software for solving general,
constrained, multi-variable non-linear optimization prob-
lems, it is now possible to solve sophisticated problems
numerically in relatively short time. Second, the notion that
muscle forces are controlled in some way to optimize
physiological criteria has great intuitive appeal. It has been
shown that for motions like walking, static optimization
yields very similar results to dynamic optimization (Ander-
son, F C and Pandy, M G., Static and Dynamic Optimization
Solutions for Gait are practically equivalent, Journal of
Biomechanics 34, 2001, 153-161, 2001).

[0055] A muscle force and muscle capacity module takes
the computed torques from the inverse model (denoted by
D)) as inputs and calculates the muscle forces based on a
static optimization criterion (module 410 in FIG. 4). While
any cost function can be defined in solving the optimization
problem, the one used here minimizes the sum of muscle
activations squared
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[0056] where m is the number of muscles crossing the
joint, a; is the activation level for muscle i and is constrained
to be between 0.01 and 1.0. A muscle force F; for muscle 1
can be represented as below;
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[0057] where

F°
[0058] represents a maximum force limit for muscle i. A

gradient based technique can be used to numerically solve
for the muscle activations that minimize the cost function J
while satisfying the joint moment equilibrium for all degrees
of freedom of interest. The optimization problem can be
solved using constrained nonlinear optimization (Sequential
Quadratic Programming; AEM Design). Once the muscle
activations are obtained, the muscle force can then be
determined using the force-length-velocity-activation rela-
tionship of muscle (Zajac, F. E. Muscle and tendon: Prop-
erties, models, scaling, and application to biomechanics and



